

Institute for Statics and Dynamics of Structures

Demolition of structures considering uncertainty

Bernd Möller

- 1 Introduction, Motivation
- 2 Data Models Fuzziness and Fuzzy Randomness
- 3 Numerical Model for Blasting
- 4 Fuzzy Multibody Dynamics
- 5 Fuzzy Probabilistic Multibody Dynamics
- 6 Conclusions

Introduction (1)

Institute for Statics and Dynamics of Structures

KW Thierbach, October 2002

Introduction (1)

Introduction (2)

Institute for Statics and Dynamics of Structures

structural parameters

- geometry
- material
- failure zones

blasting parameters

- time of detonation
- detonation impacts
- grade of local structural damage

contact parameters

Introduction (3)

Institute for Statics and Dynamics of Structures

uncertain geometrical parameters

uncertain position of reinforcement

Data Models (1)

Data Models (2) - Fuzziness

Institute for Statics and Dynamics of Structures

fuzzy variable \widetilde{X}

Data Models (3) - Fuzziness

Data Models (4) – Fuzzy functions

Data Models (6) – Fuzzy Randomness

Data Models (6) – Fuzzy Randomness

Institute for Statics and Dynamics of Structures

an original $\mathbf{X}_{\mathbf{j}}$ has the porperty of a real random variable \mathbf{X}

 $\underline{\widetilde{X}}$:= fuzzy set of all originals \underline{X}_{i}

Data Models (7) – Fuzzy Randomness

Institute for Statics and Dynamics of Structures

fuzzy probability distribution function

Data Models – Fuzzy Random Functions

Institute for Statics and Dynamics of Structures

given:set of fuzzy random variables \widetilde{X} at points $\underline{t} \in \underline{T}$ with $\underline{t} = \{\tau, \underline{\theta}\}, \quad \tau$ time $\underline{\theta} = \{\theta_1, \theta_2, \theta_3\}$ spatial coordinates

$$\begin{split} \tilde{\mathsf{X}}(\underline{\mathsf{t}}) &= \left\{ \begin{array}{l} \tilde{\mathsf{X}}_{\underline{\mathsf{t}}} = \tilde{\mathsf{X}}\left(\underline{\mathsf{t}}\right) \; \forall \underline{\mathsf{t}} \; \left| \underline{\mathsf{t}} \in \underline{\mathsf{T}} \right. \right\} \\ \mathsf{X}(\underline{\mathsf{t}}) : \; \mathsf{T} \times \Omega \; \to \mathsf{F}(\mathsf{X} \; \mathsf{)} \end{split}$$

special cases:1no randomness: $\widetilde{X}(\underline{t}) \rightarrow \widetilde{X}(\underline{t})$ fuzzy function2no fuzziness: $\widetilde{X}(\underline{t}) \rightarrow X(w)$ random function3for fixed t : $\widetilde{X}(\underline{t}) \rightarrow \widetilde{X}(\underline{q})$ fuzzy random field

Numerical Model (1)

Numerical Model (2)

Numerical Model (3)

Institute for Statics and Dynamics of Structures

LS-DYNA USER INPUT Time = 0

. Z

Numerical Model (4)

Numerical Model (5)

Institute for Statics and Dynamics of Structures

$\left[F_{1}(1)\right]$		FL. (4.4)			1. (1. 1)			$\left[V_{1}(1) \right]$
F ₂ (1)		$ K_{11}(I,I) $	•••	K ₁₁ (1,6)	κ ₁₂ (1,1)	•••	K ₁₂ (1,6)	v ₂ (1)
F ₃ (1)		:	•.	÷	:	•.	:	V ₃ (1)
M ₁ (1)								φ ₁ (1)
M ₂ (1)		k ₁₁ (6,1)	•••	k ₁₁ (6,6)	k ₁₂ (6,1)	•••	k ₁₂ (6,6)	φ ₂ (1)
M ₃ (1)								φ ₃ (1)
F ₁ (2)		k ₂₁ (1,1)	•••	k ₂₁ (1,6)	k ₂₂ (1,1)	•••	k ₂₂ (1,6)	v ₁ (2)
F ₂ (2)								v ₂ (2)
F ₃ (2)		:	•.	÷	÷	•.	:	V ₃ (2)
M ₁ (2)								φ ₁ (2)
M ₂ (2)		_k ₂₁ (6,1)	•••	k ₂₁ (6,6)	k ₂₂ (6,1)	•••	k ₂₂ (6,6)	φ ₂ (2)
[M ₃ (2)]								_φ ₃ (2)

nonlinear relations between forces and displacements

Numerical Model (7)

Numerical Model (6)

Institute for Statics and Dynamics of Structures

force deformation realation v(F)

Numerical Model (6) – Fuzzy Function

Institute for Statics and Dynamics of Structures

fuzzy function: $\widetilde{v} = \widetilde{v}(F)$

Numerical Model (7) – Fuzzy Random Function

Institute for Statics and Dynamics of Structures

fuzzy random function $\widetilde{v} = \widetilde{v}(F)$

Slide 23 of 45

Numerical Model (8) – Algorithmic Procedure

Institute for Statics and Dynamics of Structures

orientation of the rigid body i in R^3

Numerical Model (9) – Algorithmic Procedure

Institute for Statics and Dynamics of Structures

kinematical constraints

$$\underline{\mathbf{C}}_{\mathbf{q}\mathbf{r}} = \underline{\mathbf{C}}(\underline{\mathbf{q}}_{\mathbf{r}}, \mathbf{t}) = \left[\mathbf{C}_{1}(\underline{\mathbf{q}}_{\mathbf{r}}, \mathbf{t}), \mathbf{C}_{2}(\underline{\mathbf{q}}_{\mathbf{r}}, \mathbf{t}), \dots, \mathbf{C}_{\mathbf{nc}}(\underline{\mathbf{q}}_{\mathbf{r}}, \mathbf{t})\right] = \mathbf{0}$$

$$n_{b} \text{ rigid bodies:} \qquad \underline{\mathbf{q}}_{\mathbf{r}} = \left[\underline{\mathbf{q}}_{\mathbf{r}}^{1}, \underline{\mathbf{q}}_{\mathbf{r}}^{2}, \dots, \underline{\mathbf{q}}_{\mathbf{r}}^{\mathbf{nb}}\right]^{\mathsf{T}}$$

holonomic constraints

none holonomic constraints

Numerical Model (10) – Algorithmic Procedure

Institute for Statics and Dynamics of Structures

Lagrangian equation of motion

rigid bodies only:
$$\underline{M}\underline{\ddot{q}}_{r} + \underline{C}_{qr}^{T}\underline{\lambda} = \underline{Q}_{e} + \underline{Q}_{v}$$

rigid and flexible bodies:

$$\begin{bmatrix} \underline{m}_{rr} & \underline{m}_{rf} \\ \underline{m}_{fr} & \underline{m}_{ff} \end{bmatrix} \begin{bmatrix} \underline{\ddot{q}}_{r} \\ \underline{\ddot{q}}_{f} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \underline{K}_{ff} \end{bmatrix} \begin{bmatrix} \underline{q}_{r} \\ \underline{q}_{f} \end{bmatrix} + \begin{bmatrix} \underline{C}_{qr}^{\mathsf{T}} \\ \underline{C}_{qf}^{\mathsf{T}} \end{bmatrix} \underline{\lambda} = \begin{bmatrix} (\underline{Q}_{r})_{e} \\ (\underline{Q}_{f})_{e} \end{bmatrix} + \begin{bmatrix} (\underline{Q}_{r})_{v} \\ (\underline{Q}_{f})_{v} \end{bmatrix}$$

Fuzzy Multibody Dynamics (1)

Fuzzy Multibody Dynamics (2)

Fuzzy Probabilistic Multibody Dynamics (1)

Fuzzy Probabilistic Multibody Dynamics (2)

Institute for Statics and Dynamics of Structures

fuzzy random input parameters:

fuzzy probability distribution functions $\tilde{F}_1(x) = F_1(x, \tilde{s}_1)$ and $\tilde{F}_2(x) = F_2(x, \tilde{s}_2)$

Fuzzy Probabilistic Multibody Dynamics (3)

Fuzzy Multi Body Dynamics (1) – Example 1

Institute for Statics and Dynamics of Structures

fuzzy load-displacement-dependencies

$$\overset{\sim}{\phi_1}(\mathsf{M}) = \overset{\sim}{\mathsf{s}}_1 \cdot \phi_1(\mathsf{M})$$

$$\overset{\sim}{\phi_2}(M) = \overset{\sim}{s_2} \cdot \phi_2(M)$$

Fuzzy Multi Body Dynamics (2) – Example 1

Institute for Statics and Dynamics of Structures

fuzzy bunch parameter \widetilde{s}_1

fuzzy bunch parameter \widetilde{s}_2

Fuzzy Multi Body Dynamics (3) – Example 1

Institute for Statics and Dynamics of Structures

fuzzy load displacement relation

Fuzzy Multi Body Dynamics (2)

• objective function:
$$Z_j = f_j(x_1; ...; x_n) \implies \max | (x_1; ...; x_n) \in \underline{X}_{\alpha}$$

 $Z_j = f_j(x_1; ...; x_n) \implies \min | (x_1; ...; x_n) \in \underline{X}_{\alpha}$

Fuzzy Multi Body Dynamics (4) – Example 1

Fuzzy Multi Body Dynamics (5) – Example 1

Fuzzy Multibody Dynamics (6) – Example 1

Fuzzy Multibody Dynamics (7) – Example 1

Institute for Statics and Dynamics of Structures

debris distance radius

Fuzzy Multibody Dynamics (8) – Example 1

Fuzzy Multibody Dynamics (9) – Example 1

Fuzzy Multibody Dynamics (10) – Example 1

Institute for Statics and Dynamics of Structures

fuzzy distance r

Fuzzy Probabilistic Multibody Dynamics (1) - Example

Institute for Statics and Dynamics of Structures

load displacement relation

 $\widetilde{\phi}_1(M,\widetilde{s}_1)$ und $\widetilde{\phi}_2(M,\widetilde{s}_2)$

 $\widetilde{\phi_i}(\boldsymbol{M}, \widetilde{\boldsymbol{s}_i}) \quad \text{are modeled as} \\ fuzzy \ random \ function$

 uncertain lognormal distribution with fuzzy standard devations s

Fuzzy Probabilistic Multibody Dynamics (2) - Example

Fuzzy Probabilistic Multibody Dynamics (3) - Example

- In the case of data uncertainty fuzziness and fuzzy randomness are useful mathematical models
- The application on blasting processes demonstrates the information profit in practicel problems

Thank you !